14 research outputs found

    Velocity and drop size measurements in a swirl-stabilized, combusting spray

    Get PDF
    Velocity and drop size measurements are reported for a swirl-stabilized, combusting spray. For the gas phase, three components of mean and fluctuating velocity are reported. For the droplets, three components of mean and fluctuating velocity, diameter, and number flux are reported. The liquid fuel utilized for all the tests was heptane. The fuel was injected using an air-assist atomizer. The combustor configuration consisted of a center-mounted, air-assist atomizer surrounded by a coflowing air stream. Both the coflow and the atomizing air streams were passed through 45 degree swirlers. The swirl was imparted to both streams in the same direction. The combustion occurred unconfined in stagnant surroundings. The nonintrusive measurements were obtained using a two-component phase/Doppler particle analyzer. The laser-based instrument measured two components of velocity as well as droplet size at a particular point. Gas phase measurements were obtained by seeding the air streams with nominal 1 micron size aluminum-oxide particles and using the measured velocity from that size to represent the gas phase velocity. The atomizing air, coflow air, and ambient surroundings were all seeded with the aluminum-oxide particles to prevent biasing. Measurements are reported at an axial distance of 5 mm from the nozzle. Isothermal single-phase gas velocities are also reported for comparison with the combusting case

    Velocity and drop size measurements in a confined, swirl-stabilized, combusting spray

    Get PDF
    Drop size and velocity measurements in a confined, swirl-stabilized, reacting spray are presented. The configuration consisted of a center-mounted research air-assist atomizer surrounded by a coflowing air stream. A quartz tube surrounded the burner and provided the confinement. Both the air-assist and coflow streams had swirl imparted to them in the same direction with 45-degree-angle swirlers. The fuel and air entered the combustor at ambient temperature. The gas-phase measurements reported were obtained from the velocity drops with a mean diameter of four microns. Heptane fuel was used for all the experiments. Measurements of drop size and velocity, gas-phase velocity and drop number flux are reported for axial distances of 23, 5, 10, 15, 25, and 50 mm downstream of the nozzle. The measurements were performed using a two-component phase/Doppler particle analyzer. Profiles across the entire flowfield are presented

    Particle-laden weakly swirling free jets: Measurements and predictions

    Get PDF
    A theoretical and experimental investigation of particle-laden, weakly swirling, turbulent free jets was conducted. Glass particles, having a Sauter mean diameter of 39 microns, with a standard deviation of 15 microns, were used. A single loading ratio (the mass flow rate of particles per unit mass flow rate of air) of 0.2 was used in the experiments. Measurements are reported for three swirl numbers, ranging from 0 to 0.33. The measurements included mean and fluctuating velocities of both phases, and particle mass flux distributions. Measurements were also completed for single-phase non-swirling and swirling jets, as baselines. Measurements were compared with predictions from three types of multiphase flow analysis, as follows: (1) locally homogeneous flow (LHF) where slip between the phases was neglected; (2) deterministic separated flow (DSF), where slip was considered but effects of turbulence/particle interactions were neglected; and (3) stochastic separated flow (SSF), where effects of both interphase slip and turbulence/particle interactions were considered using random sampling for turbulence properties in conjunction with random-walk computations for particle motion. Single-phase weakly swirling jets were considered first. Predictions using a standard k-epsilon turbulence model, as well as two versions modified to account for effects of streamline curvature, were compared with measurements. Predictions using a streamline curvature modification based on the flux Richardson number gave better agreement with measurements for the single-phase swirling jets than the standard k-epsilon model. For the particle-laden jets, the LHF and DSF models did not provide very satisfactory predictions. The LHF model generally overestimated the rate of decay of particle mean axial and angular velocities with streamwise distance, and predicted particle mass fluxes also showed poor agreement with measurements, due to the assumption of no-slip between phases. The DSF model also performed quite poorly for predictions of particle mass flux because turbulent dispersion of the particles was neglected. The SSF model, which accounts for both particle inertia and turbulent dispersion of the particles, yielded reasonably good predictions throughout the flow field for the particle-laden jets

    Structure of a swirl-stabilized combusting spray

    Get PDF
    Measurements of the structure of a swirl-stabilized, reacting spray are presented. The configuration consisted of a research air-assist atomizer located in the center surrounded by a co-flowing airstream. Both the air-assist and co-flowing streams had swirl imparted to them in the same direction with 45-deg angle swirlers. The fuel and air entered the combustor at ambient temperature and the combustor was operated in an unconfined environment. The gas phase was seeded with aluminum-oxide particles in order to obtain velocity measurements. Mean velocity measurements for the gas phase are reported for both an isothermal, single-phase case without drops and a reacting spray case at axial distances from 2.5 to 50 mm downstream of the nozzle. Heptane fuel was used for all the experiments. Drop size and mean velocity and drop number flux are also reported for five axial distances downstream. The measurements were performed using a two-component phase/Doppler particle analyzer. Profiles across the entire flowfield where velocities were significant are presented. Mean gas-phase temperatures were also measured intrusively using a single pt/pt-13%rh thermocouple and are also reported at axial distances from 2.5 to 50 "im downstream of the nozzle

    On the Oscillation of Combustion of a Laminar Spray

    Get PDF
    A spray combustor, with flow velocities in the laminar range, exhibits a unique operating mode where large amplitude, self-induced oscillations of the flame shape occur. The phenomenon, not previously encountered, only occurs when fuel is supplied in the form of fine liquid droplets and does not occur when fuel is supplied in gaseous form. Several flow mechanisms are coupled in such a fashion as to trigger and maintain the oscillatory motion of the flame. These mechanisms include heat transfer and evaporation processes, dynamics of two-phase flows, and effects of gravity (buoyancy forces). An interface volume, lying between the fuel nozzle and the flame was found to be the most susceptible to gravity effects, and postulated to be responsible for inducing the oscillatory motion. Heptane fuel was used in the majority of the tests

    Spray combustion experiments and numerical predictions

    Get PDF
    The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines

    On the combustion of a laminar spray

    Get PDF
    A spray combustor, with flow velocities in the laminar range, exhibits a unique operating mode where large amplitude, self-induced oscillations of the flame shape occur. The phenomenon, not previously encountered, only occurs when fuel is supplied in the form of fine liquid droplets and does not occur when fuel is supplied in gaseous form. Several flow mechanisms are coupled in such a fashion as to trigger and maintain the oscillatory motion of the flame. These mechanisms include heat transfer and evaporation processes, dynamics of two-phase flows, and effects of gravity (buoyancy forces). An interface volume, lying above the fuel nozzle and below the flame was found to be the most susceptible to gravity effects and postulated to be responsible for inducing the oscillatory motion. Heptane fuel was used in the majority of the tests. Tests performed with iso-octane also showed similar results

    Measurements and predictions of a liquid spray from an air-assist nozzle

    Get PDF
    Droplet size and gas velocity were measured in a water spray using a two-component Phase/Doppler Particle Analyzer. A complete set of measurements was obtained at axial locations from 5 to 50 cm downstream of the nozzle. The nozzle used was a simple axisymmetric air-assist nozzle. The sprays produced, using the atomizer, were extremely fine. Sauter mean diameters were less than 20 microns at all locations. Measurements were obtained for droplets ranging from 1 to 50 microns. The gas phase was seeded with micron sized droplets, and droplets having diameters of 1.4 microns and less were used to represent gas-phase properties. Measurements were compared with predictions from a multi-phase computer model. Initial conditions for the model were taken from measurements at 5 cm downstream. Predictions for both the gas phase and the droplets showed relatively good agreement with the measurements

    Particle-laden weakly swirling free jets - Measurements and predictions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76189/1/AIAA-1988-3138-226.pd

    Spray Combustion Experiments and Numerical Predictions

    Get PDF
    The next generation of commercial aircraft will include turbofan engines with performances significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This presentation describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. In addition, an advanced combustor CFD code has been under development and predictions from this code are presented and compared with measurements. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as valuable design tools for optimization of combustor concepts for the next generation of aircraft engines
    corecore